CIS 419/519 Recitation

23 September 2020

Linear Classifiers

10

When should you use linear classifiers, and . =
when should you use a more expressive °| v L e
class of functions?] .y ® ":?.:‘ K
@ o %? .odo:.’
° o# .00.’,‘ o
The bigger your data set, the more T ”;:-.zég;._,ﬁa;, .
. s Ceu @A .o
parameters (of a function) you can learn RPN X2 ».;g‘ .. .
. . . 21 e & o, /‘rt” ‘.‘oﬁo °
from it. Linear classifiers have fewer TR Y T IS

parameters than most function classes, so o}
you can learn a linear classifier with
relatively little data. I T R T EE R

source: http://mlpy.sourceforge.net/docs/3.5/lin_class.html

Loss Functions

Used to evaluate performance of models and guide training
0-1 loss: 0 if model gives correct label, 1 if model gives incorrect label

We usually care about the 0-1 loss, but minimizing 0-1 loss is computationally
hard, so we use surrogate losses instead.

Loss functions: examples

Label space is {-1, +1}

Functions in hypothesis
space are of the form
sgn(f(x)), where fis a
real-valued function

sgn(z) = —-1lifz< 0
+1 otherwise

\

Here f(x) is the prediction € R
ye {-

0-1 Loss
Log Loss
Hinge Loss

Square Loss

1,1} is the correct va\ue

Ly, f(x)) = Y2 (1 —sgn(yf(x)))
1/In2 log(1 + exp{—yf(x)})
L@y, f(x)) = max(0,1 — y f(x))

Lo f) = (v - F@)°

0-1 Loss: zaxis =yf(x)
Log Loss: z axis = yf(x)
Hinge Loss: z axis = yf (x)
Square Loss:zaxis = (y — f(x)+ 1)

—2

CIS 419/519 Fall'2020

From lecture slides

Gradient Descent

Procedure that finds a local minimum of a differentiable function: at each iteration,
computing the gradient at the current guess and update the guess accordingly

In our case, we want to minimize average loss over a training set (our “values” are
weight vectors taken from a parameter space).

Stochastic gradient descent: instead of computing the loss over the entire training
set, we instead use a small subset of the training set. Each iteration of stochastic
gradient descent makes less progress (or possibly no progress) toward a local
minimum, but we can do more iterations with the same training time.

Example: Gradient descent using LMS loss

Recall from lecture that LMS loss is defined as 72 2 (t, - od)2
The update rule is w' =w + RZ (t, — 0,)X,

In the degenerate case where there is one training example, it is easy to see that
this update rule reduces the square loss

o =wTx=(w+R(-0)x)x=w'x+R(t - o)lxll?

If the original prediction is too small, then the update rule makes the new
prediction larger, and vice versa

Decision Trees

Sunny | Snowy OuTL?Ze?
Y Y T
N Y F
Y Y T
N N F
Y N T
N Y F
N N T
Y N F

) =1
4 2
Snowy)_ E("Z
= A
4(3
— —|-—-1lo
Sunny) - 8(4 gz(

4

4

(

4

4

4

Decision Trees

Play

Sunny | Snowy | g, tside?

v v ! Entropy(S 2 (?:f_logzlﬁJ— 0)+ % (‘%logz(%)‘ é"’gﬂ %)

Sunny = Yes, SSnowy) 4

=0.5

Bias/Variance Tradeoff

- Bias: How likely is the model to learn the target function?
- High bias: The model is able to fully approximate target function
- Low bias: The model is not able to express the function

- Variance: How affected is the model by changes in training data?
- Low variance: Slight changes in training data does not affect model
- High variance: Slight changes in training data affects model heavily

- Bias and variance have an inverse relationship, we want to balance them

Bias/Variance Tradeoff

-
>

Optimal
models

| =

- :
- Variance

Prediction error

-

--_-—-‘

>

Model complexity

Overfitting

- The causes of overfitting are twofold
- Overly complex model
- Not enough data
- These lead you to fitting noise in the training data

- Bad news: overfitting is something you will encounter often

- Good news: It is easy to detect/fix

Detecting Overfitting

accuracy

— On training

On testing

Complexity of tree

Fixing Overfitting

- Reduce complexity of model
- Complexity = #parameters
- Eg. Depth of decision tree

- Don't train too long
- Going over training data multiple times can increase chance of overfitting

- Try obtain more training data
- Obtain new data from similar sources
- Use more data for training and less for validation/testing

Overfitting lllustration

- Black line represents true boundary
between classes

- Data is noisy, certain points with
incorrect/unexpected labels

- Green line represents overfitting
model

- Model fits the noise in the training
data, learning incorrect decision
boundary

- This leads to errors when predicting
test labels

- Model does not generalize well

